Convolution Shortcuts

From PrattWiki
Revision as of 19:00, 11 February 2010 by DukeEgr93 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The following is a list of convolutions that are good to know. In each case, \(f(t)\) represents an arbitrary function while \(a\) and \(a\) represent constants.

Convolution with Impulses

\(\begin{align} \delta(t)*f(t)&=f(t)\\ \delta(t-a)*f(t)&=f(t-a)\\ \delta(t)*f(t-b)&=f(t-b)\\ \delta(t-a)*f(t-b)&=f(t-a-b)\\ \end{align}\)

Convolution with Other Singularities

\(\begin{align} u(t)*f(t)&=\int_{-\infty}^{t}f(\tau)~d\tau\\ r(t)*f(t)=u(t)*u(t)*f(t)&=\int_{-\infty}^{t}\int_{-\infty}^{\gamma}f(\tau)~d\tau~d\gamma\\ \end{align}\)

Convolution Between Singularity Functions

\(\begin{align} u(t)*u(t)&=r(t)=tu(t)\\ u(t)*r(t)=u(t)*u(t)*u(t)&=q(t)=\frac{1}{2}t^2u(t)\\ u(t)*q(t)=r(t)*r(t)=u(t)*u(t)*u(t)*u(t)&=\frac{1}{6}t^3u(t)\\ \mbox{equivalent of }n\mbox{ steps convolved together}&=\frac{1}{(n-1)!}t^{n-1}u(t) \end{align}\)


Questions

Post your questions by editing the discussion page of this article. Edit the page, then scroll to the bottom and add a question by putting in the characters *{{Q}}, followed by your question and finally your signature (with four tildes, i.e. ~~~~). Using the {{Q}} will automatically put the page in the category of pages with questions - other editors hoping to help out can then go to that category page to see where the questions are. See the page for Template:Q for details and examples.

External Links

References