Difference between revisions of "Examples/Req"

From PrattWiki
Jump to navigation Jump to search
(punchline)
Line 57: Line 57:
 
<center>
 
<center>
 
<math>
 
<math>
{\frac {R_{{1}}R_{{2}}R_{{3}}R_{{4}}R_{{7}}+R_{{1}}R_{{2}}R_{{3}}R_{{4
+
\frac {R_{1}R_{2}R_{3}R_{4}R_{7}+R_{1}R_{2}R_{3}R_{4}R_{8}+R_{1}R_{2}R_{3}R_{4}R_{11}+R_{1}R_{2}R_{3}R_{6}R_{7}+R_{1}R_{2}R_{3}R_{6}R_{8}+R_{1}R_{2}R_{3}R_{6}R_{11}+R_{1}R_{2}R_{3}R_{7}R_{8}+R_{1}R_{2}R_{3}R_{7}R_{11}+R_{1}R_{2}R_{4}R_{6}R_{7}+R_{1}R_{2}R_{4}R_{6}R_{8}+R_{1}R_{2}R_{4}R_{6}R_{11}+R_{1}R_{2}R_{4}R_{7}R_{8}+R_{1}R_{2}R_{4}R_{7}R_{11}+R_{1}R_{3}R_{4}R_{5}R_{7}+R_{1}R_{3}R_{4}R_{5}R_{8}+R_{1}R_{3}R_{4}R_{5}R_{11}+R_{1}R_{3}R_{4}R_{6}R_{7}+R_{1}R_{3}R_{4}R_{6}R_{8}+R_{1}R_{3}R_{4}R_{6}R_{11}+R_{1}R_{3}R_{4}R_{7}R_{10}+R_{1}R_{3}R_{4}R_{8}R_{10}+R_{1}R_{3}R_{4}R_{10}R_{11}+R_{1}R_{3}R_{5}R_{6}R_{7}+R_{1}R_{3}R_{5}R_{6}R_{8}+R_{1}R_{3}R_{5}R_{6}R_{11}+R_{1}R_{3}R_{5}R_{7}R_{8}+R_{1}R_{3}R_{5}R_{7}R_{11}+R_{1}R_{3}R_{6}R_{7}R_{8}+R_{1}R_{3}R_{6}R_{7}R_{10}+R_{1}R_{3}R_{6}R_{7}R_{11}+R_{1}R_{3}R_{6}R_{8}R_{10}+R_{1}R_{3}R_{6}R_{10}R_{11}+R_{1}R_{3}R_{7}R_{8}R_{10}+R_{1}R_{3}R_{7}R_{10}R_{11}+R_{1}R_{4}R_{5}R_{6}R_{7}+R_{1}R_{4}R_{5}R_{6}R_{8}+R_{1}R_{4}R_{5}R_{6}R_{11}+R_{1}R_{4}R_{5}R_{7}R_{8}+R_{1}R_{4}R_{5}R_{7}R_{11}+R_{1}R_{4}R_{6}R_{7}R_{8}+R_{1}R_{4}R_{6}R_{7}R_{10}+R_{1}R_{4}R_{6}R_{7}R_{11}+R_{1}R_{4}R_{6}R_{8}R_{10}+R_{1}R_{4}R_{6}R_{10}R_{11}+R_{1}R_{4}R_{7}R_{8}R_{10}+R_{1}R_{4}R_{7}R_{10}R_{11}+R_{2}R_{3}R_{4}R_{5}R_{7}+R_{2}R_{3}R_{4}R_{5}R_{8}+R_{2}R_{3}R_{4}R_{5}R_{11}+R_{2}R_{3}R_{4}R_{7}R_{9}+R_{2}R_{3}R_{4}R_{8}R_{9}+R_{2}R_{3}R_{4}R_{9}R_{11}+R_{2}R_{3}R_{5}R_{6}R_{7}+R_{2}R_{3}R_{5}R_{6}R_{8}+R_{2}R_{3}R_{5}R_{6}R_{11}+R_{2}R_{3}R_{5}R_{7}R_{8}+R_{2}R_{3}R_{5}R_{7}R_{11}+R_{2}R_{3}R_{6}R_{7}R_{9}+R_{2}R_{3}R_{6}R_{8}R_{9}+R_{2}R_{3}R_{6}R_{9}R_{11}+R_{2}R_{3}R_{7}R_{8}R_{9}+R_{2}R_{3}R_{7}R_{9}R_{11}+R_{2}R_{4}R_{5}R_{6}R_{7}+R_{2}R_{4}R_{5}R_{6}R_{8}+R_{2}R_{4}R_{5}R_{6}R_{11}+R_{2}R_{4}R_{5}R_{7}R_{8}+R_{2}R_{4}R_{5}R_{7}R_{11}+R_{2}R_{4}R_{6}R_{7}R_{9}+R_{2}R_{4}R_{6}R_{8}R_{9}+R_{2}R_{4}R_{6}R_{9}R_{11}+R_{2}R_{4}R_{7}R_{8}R_{9}+R_{2}R_{4}R_{7}R_{9}R_{11}+R_{3}R_{4}R_{5}R_{6}R_{7}+R_{3}R_{4}R_{5}R_{6}R_{8}+R_{3}R_{4}R_{5}R_{6}R_{11}+R_{3}R_{4}R_{5}R_{7}R_{9}+R_{3}R_{4}R_{5}R_{7}R_{10}+R_{3}R_{4}R_{5}R_{8}R_{9}+R_{3}R_{4}R_{5}R_{8}R_{10}+R_{3}R_{4}R_{5}R_{9}R_{11}+R_{3}R_{4}R_{5}R_{10}R_{11}+R_{3}R_{4}R_{6}R_{7}R_{9}+R_{3}R_{4}R_{6}R_{8}R_{9}+R_{3}R_{4}R_{6}R_{9}R_{11}+R_{3}R_{4}R_{7}R_{9}R_{10}+R_{3}R_{4}R_{8}R_{9}R_{10}+R_{3}R_{4}R_{9}R_{10}R_{11}+R_{3}R_{5}R_{6}R_{7}R_{8}+R_{3}R_{5}R_{6}R_{7}R_{9}+R_{3}R_{5}R_{6}R_{7}R_{10}+R_{3}R_{5}R_{6}R_{7}R_{11}+R_{3}R_{5}R_{6}R_{8}R_{9}+R_{3}R_{5}R_{6}R_{8}R_{10}+R_{3}R_{5}R_{6}R_{9}R_{11}+R_{3}R_{5}R_{6}R_{10}R_{11}+R_{3}R_{5}R_{7}R_{8}R_{9}+R_{3}R_{5}R_{7}R_{8}R_{10}+R_{3}R_{5}R_{7}R_{9}R_{11}+R_{3}R_{5}R_{7}R_{10}R_{11}+R_{3}R_{6}R_{7}R_{8}R_{9}+R_{3}R_{6}R_{7}R_{9}R_{10}+R_{3}R_{6}R_{7}R_{9}R_{11}+R_{3}R_{6}R_{8}R_{9}R_{10}+R_{3}R_{6}R_{9}R_{10}R_{11}+R_{3}R_{7}R_{8}R_{9}R_{10}+R_{3}R_{7}R_{9}R_{10}R_{11}+R_{4}R_{5}R_{6}R_{7}R_{8}+R_{4}R_{5}R_{6}R_{7}R_{9}+R_{4}R_{5}R_{6}R_{7}R_{10}+R_{4}R_{5}R_{6}R_{7}R_{11}+R_{4}R_{5}R_{6}R_{8}R_{9}+R_{4}R_{5}R_{6}R_{8}R_{10}+R_{4}R_{5}R_{6}R_{9}R_{11}+R_{4}R_{5}R_{6}R_{10}R_{11}+R_{4}R_{5}R_{7}R_{8}R_{9}+R_{4}R_{5}R_{7}R_{8}R_{10}+R_{4}R_{5}R_{7}R_{9}R_{11}+R_{4}R_{5}R_{7}R_{10}R_{11}+R_{4}R_{6}R_{7}R_{8}R_{9}+R_{4}R_{6}R_{7}R_{9}R_{10}+R_{4}R_{6}R_{7}R_{9}R_{11}+R_{4}R_{6}R_{8}R_{9}R_{10}+R_{4}R_{6}R_{9}R_{10}R_{11}+R_{4}R_{7}R_{8}R_{9}R_{10}+R_{4}R_{7}R_{9}R_{10}R_{11}}{R_{2}R_{3}R_{4}R_{7}+R_{2}R_{3}R_{4}R_{8}+R_{2}R_{3}R_{4}R_{11}+R_{2}R_{3}R_{6}R_{7}+R_{2}R_{3}R_{6}R_{8}+R_{2}R_{3}R_{6}R_{11}+R_{2}R_{3}R_{7}R_{8}+R_{2}R_{3}R_{7}R_{11}+R_{2}R_{4}R_{6}R_{7}+R_{2}R_{4}R_{6}R_{8}+R_{2}R_{4}R_{6}R_{11}+R_{2}R_{4}R_{7}R_{8}+R_{2}R_{4}R_{7}R_{11}+R_{3}R_{4}R_{5}R_{7}+R_{3}R_{4}R_{5}R_{8}+R_{3}R_{4}R_{5}R_{11}+R_{3}R_{4}R_{6}R_{7}+R_{3}R_{4}R_{6}R_{8}+R_{3}R_{4}R_{6}R_{11}+R_{3}R_{4}R_{7}R_{10}+R_{3}R_{4}R_{8}R_{10}+R_{3}R_{4}R_{10}R_{11}+R_{3}R_{5}R_{6}R_{7}+R_{3}R_{5}R_{6}R_{8}+R_{3}R_{5}R_{6}R_{11}+R_{3}R_{5}R_{7}R_{8}+R_{3}R_{5}R_{7}R_{11}+R_{3}R_{6}R_{7}R_{8}+R_{3}R_{6}R_{7}R_{10}+R_{3}R_{6}R_{7}R_{11}+R_{3}R_{6}R_{8}R_{10}+R_{3}R_{6}R_{10}R_{11}+R_{3}R_{7}R_{8}R_{10}+R_{3}R_{7}R_{10}R_{11}+R_{4}R_{5}R_{6}R_{7}+R_{4}R_{5}R_{6}R_{8}+R_{4}R_{5}R_{6}R_{11}+R_{4}R_{5}R_{7}R_{8}+R_{4}R_{5}R_{7}R_{11}+R_{4}R_{6}R_{7}R_{8}+R_{4}R_{6}R_{7}R_{10}+R_{4}R_{6}R_{7}R_{11}+R_{4}R_{6}R_{8}R_{10}+R_{4}R_{6}R_{10}R_{11}+R_{4}R_{7}R_{8}R_{10}+R_{4}R_{7}R_{10}R_{11}}
}}R_{{8}}+R_{{1}}R_{{2}}R_{{3}}R_{{4}}R_{{11}}+R_{{1}}R_{{2}}R_{{3}}R_
 
{{6}}R_{{7}}+R_{{1}}R_{{2}}R_{{3}}R_{{6}}R_{{8}}+R_{{1}}R_{{2}}R_{{3}}
 
R_{{6}}R_{{11}}+R_{{1}}R_{{2}}R_{{3}}R_{{7}}R_{{8}}+R_{{1}}R_{{2}}R_{{
 
3}}R_{{7}}R_{{11}}+R_{{1}}R_{{2}}R_{{4}}R_{{6}}R_{{7}}+R_{{1}}R_{{2}}R
 
_{{4}}R_{{6}}R_{{8}}+R_{{1}}R_{{2}}R_{{4}}R_{{6}}R_{{11}}+R_{{1}}R_{{2
 
}}R_{{4}}R_{{7}}R_{{8}}+R_{{1}}R_{{2}}R_{{4}}R_{{7}}R_{{11}}+R_{{1}}R_
 
{{3}}R_{{4}}R_{{5}}R_{{7}}+R_{{1}}R_{{3}}R_{{4}}R_{{5}}R_{{8}}+R_{{1}}
 
R_{{3}}R_{{4}}R_{{5}}R_{{11}}+R_{{1}}R_{{3}}R_{{4}}R_{{6}}R_{{7}}+R_{{
 
1}}R_{{3}}R_{{4}}R_{{6}}R_{{8}}+R_{{1}}R_{{3}}R_{{4}}R_{{6}}R_{{11}}+R
 
_{{1}}R_{{3}}R_{{4}}R_{{7}}R_{{10}}+R_{{1}}R_{{3}}R_{{4}}R_{{8}}R_{{10
 
}}+R_{{1}}R_{{3}}R_{{4}}R_{{10}}R_{{11}}+R_{{1}}R_{{3}}R_{{5}}R_{{6}}R
 
_{{7}}+R_{{1}}R_{{3}}R_{{5}}R_{{6}}R_{{8}}+R_{{1}}R_{{3}}R_{{5}}R_{{6}
 
}R_{{11}}+R_{{1}}R_{{3}}R_{{5}}R_{{7}}R_{{8}}+R_{{1}}R_{{3}}R_{{5}}R_{
 
{7}}R_{{11}}+R_{{1}}R_{{3}}R_{{6}}R_{{7}}R_{{8}}+R_{{1}}R_{{3}}R_{{6}}
 
R_{{7}}R_{{10}}+R_{{1}}R_{{3}}R_{{6}}R_{{7}}R_{{11}}+R_{{1}}R_{{3}}R_{
 
{6}}R_{{8}}R_{{10}}+R_{{1}}R_{{3}}R_{{6}}R_{{10}}R_{{11}}+R_{{1}}R_{{3
 
}}R_{{7}}R_{{8}}R_{{10}}+R_{{1}}R_{{3}}R_{{7}}R_{{10}}R_{{11}}+R_{{1}}
 
R_{{4}}R_{{5}}R_{{6}}R_{{7}}+R_{{1}}R_{{4}}R_{{5}}R_{{6}}R_{{8}}+R_{{1
 
}}R_{{4}}R_{{5}}R_{{6}}R_{{11}}+R_{{1}}R_{{4}}R_{{5}}R_{{7}}R_{{8}}+R_
 
{{1}}R_{{4}}R_{{5}}R_{{7}}R_{{11}}+R_{{1}}R_{{4}}R_{{6}}R_{{7}}R_{{8}}
 
+R_{{1}}R_{{4}}R_{{6}}R_{{7}}R_{{10}}+R_{{1}}R_{{4}}R_{{6}}R_{{7}}R_{{
 
11}}+R_{{1}}R_{{4}}R_{{6}}R_{{8}}R_{{10}}+R_{{1}}R_{{4}}R_{{6}}R_{{10}
 
}R_{{11}}+R_{{1}}R_{{4}}R_{{7}}R_{{8}}R_{{10}}+R_{{1}}R_{{4}}R_{{7}}R_
 
{{10}}R_{{11}}+R_{{2}}R_{{3}}R_{{4}}R_{{5}}R_{{7}}+R_{{2}}R_{{3}}R_{{4
 
}}R_{{5}}R_{{8}}+R_{{2}}R_{{3}}R_{{4}}R_{{5}}R_{{11}}+R_{{2}}R_{{3}}R_
 
{{4}}R_{{7}}R_{{9}}+R_{{2}}R_{{3}}R_{{4}}R_{{8}}R_{{9}}+R_{{2}}R_{{3}}
 
R_{{4}}R_{{9}}R_{{11}}+R_{{2}}R_{{3}}R_{{5}}R_{{6}}R_{{7}}+R_{{2}}R_{{
 
3}}R_{{5}}R_{{6}}R_{{8}}+R_{{2}}R_{{3}}R_{{5}}R_{{6}}R_{{11}}+R_{{2}}R
 
_{{3}}R_{{5}}R_{{7}}R_{{8}}+R_{{2}}R_{{3}}R_{{5}}R_{{7}}R_{{11}}+R_{{2
 
}}R_{{3}}R_{{6}}R_{{7}}R_{{9}}+R_{{2}}R_{{3}}R_{{6}}R_{{8}}R_{{9}}+R_{
 
{2}}R_{{3}}R_{{6}}R_{{9}}R_{{11}}+R_{{2}}R_{{3}}R_{{7}}R_{{8}}R_{{9}}+
 
R_{{2}}R_{{3}}R_{{7}}R_{{9}}R_{{11}}+R_{{2}}R_{{4}}R_{{5}}R_{{6}}R_{{7
 
}}+R_{{2}}R_{{4}}R_{{5}}R_{{6}}R_{{8}}+R_{{2}}R_{{4}}R_{{5}}R_{{6}}R_{
 
{11}}+R_{{2}}R_{{4}}R_{{5}}R_{{7}}R_{{8}}+R_{{2}}R_{{4}}R_{{5}}R_{{7}}
 
R_{{11}}+R_{{2}}R_{{4}}R_{{6}}R_{{7}}R_{{9}}+R_{{2}}R_{{4}}R_{{6}}R_{{
 
8}}R_{{9}}+R_{{2}}R_{{4}}R_{{6}}R_{{9}}R_{{11}}+R_{{2}}R_{{4}}R_{{7}}R
 
_{{8}}R_{{9}}+R_{{2}}R_{{4}}R_{{7}}R_{{9}}R_{{11}}+R_{{3}}R_{{4}}R_{{5
 
}}R_{{6}}R_{{7}}+R_{{3}}R_{{4}}R_{{5}}R_{{6}}R_{{8}}+R_{{3}}R_{{4}}R_{
 
{5}}R_{{6}}R_{{11}}+R_{{3}}R_{{4}}R_{{5}}R_{{7}}R_{{9}}+R_{{3}}R_{{4}}
 
R_{{5}}R_{{7}}R_{{10}}+R_{{3}}R_{{4}}R_{{5}}R_{{8}}R_{{9}}+R_{{3}}R_{{
 
4}}R_{{5}}R_{{8}}R_{{10}}+R_{{3}}R_{{4}}R_{{5}}R_{{9}}R_{{11}}+R_{{3}}
 
R_{{4}}R_{{5}}R_{{10}}R_{{11}}+R_{{3}}R_{{4}}R_{{6}}R_{{7}}R_{{9}}+R_{
 
{3}}R_{{4}}R_{{6}}R_{{8}}R_{{9}}+R_{{3}}R_{{4}}R_{{6}}R_{{9}}R_{{11}}+
 
R_{{3}}R_{{4}}R_{{7}}R_{{9}}R_{{10}}+R_{{3}}R_{{4}}R_{{8}}R_{{9}}R_{{
 
10}}+R_{{3}}R_{{4}}R_{{9}}R_{{10}}R_{{11}}+R_{{3}}R_{{5}}R_{{6}}R_{{7}
 
}R_{{8}}+R_{{3}}R_{{5}}R_{{6}}R_{{7}}R_{{9}}+R_{{3}}R_{{5}}R_{{6}}R_{{
 
7}}R_{{10}}+R_{{3}}R_{{5}}R_{{6}}R_{{7}}R_{{11}}+R_{{3}}R_{{5}}R_{{6}}
 
R_{{8}}R_{{9}}+R_{{3}}R_{{5}}R_{{6}}R_{{8}}R_{{10}}+R_{{3}}R_{{5}}R_{{
 
6}}R_{{9}}R_{{11}}+R_{{3}}R_{{5}}R_{{6}}R_{{10}}R_{{11}}+R_{{3}}R_{{5}
 
}R_{{7}}R_{{8}}R_{{9}}+R_{{3}}R_{{5}}R_{{7}}R_{{8}}R_{{10}}+R_{{3}}R_{
 
{5}}R_{{7}}R_{{9}}R_{{11}}+R_{{3}}R_{{5}}R_{{7}}R_{{10}}R_{{11}}+R_{{3
 
}}R_{{6}}R_{{7}}R_{{8}}R_{{9}}+R_{{3}}R_{{6}}R_{{7}}R_{{9}}R_{{10}}+R_
 
{{3}}R_{{6}}R_{{7}}R_{{9}}R_{{11}}+R_{{3}}R_{{6}}R_{{8}}R_{{9}}R_{{10}
 
}+R_{{3}}R_{{6}}R_{{9}}R_{{10}}R_{{11}}+R_{{3}}R_{{7}}R_{{8}}R_{{9}}R_
 
{{10}}+R_{{3}}R_{{7}}R_{{9}}R_{{10}}R_{{11}}+R_{{4}}R_{{5}}R_{{6}}R_{{
 
7}}R_{{8}}+R_{{4}}R_{{5}}R_{{6}}R_{{7}}R_{{9}}+R_{{4}}R_{{5}}R_{{6}}R_
 
{{7}}R_{{10}}+R_{{4}}R_{{5}}R_{{6}}R_{{7}}R_{{11}}+R_{{4}}R_{{5}}R_{{6
 
}}R_{{8}}R_{{9}}+R_{{4}}R_{{5}}R_{{6}}R_{{8}}R_{{10}}+R_{{4}}R_{{5}}R_
 
{{6}}R_{{9}}R_{{11}}+R_{{4}}R_{{5}}R_{{6}}R_{{10}}R_{{11}}+R_{{4}}R_{{
 
5}}R_{{7}}R_{{8}}R_{{9}}+R_{{4}}R_{{5}}R_{{7}}R_{{8}}R_{{10}}+R_{{4}}R
 
_{{5}}R_{{7}}R_{{9}}R_{{11}}+R_{{4}}R_{{5}}R_{{7}}R_{{10}}R_{{11}}+R_{
 
{4}}R_{{6}}R_{{7}}R_{{8}}R_{{9}}+R_{{4}}R_{{6}}R_{{7}}R_{{9}}R_{{10}}+
 
R_{{4}}R_{{6}}R_{{7}}R_{{9}}R_{{11}}+R_{{4}}R_{{6}}R_{{8}}R_{{9}}R_{{
 
10}}+R_{{4}}R_{{6}}R_{{9}}R_{{10}}R_{{11}}+R_{{4}}R_{{7}}R_{{8}}R_{{9}
 
}R_{{10}}+R_{{4}}R_{{7}}R_{{9}}R_{{10}}R_{{11}}}{R_{{2}}R_{{3}}R_{{4}}
 
R_{{7}}+R_{{2}}R_{{3}}R_{{4}}R_{{8}}+R_{{2}}R_{{3}}R_{{4}}R_{{11}}+R_{
 
{2}}R_{{3}}R_{{6}}R_{{7}}+R_{{2}}R_{{3}}R_{{6}}R_{{8}}+R_{{2}}R_{{3}}R
 
_{{6}}R_{{11}}+R_{{2}}R_{{3}}R_{{7}}R_{{8}}+R_{{2}}R_{{3}}R_{{7}}R_{{
 
11}}+R_{{2}}R_{{4}}R_{{6}}R_{{7}}+R_{{2}}R_{{4}}R_{{6}}R_{{8}}+R_{{2}}
 
R_{{4}}R_{{6}}R_{{11}}+R_{{2}}R_{{4}}R_{{7}}R_{{8}}+R_{{2}}R_{{4}}R_{{
 
7}}R_{{11}}+R_{{3}}R_{{4}}R_{{5}}R_{{7}}+R_{{3}}R_{{4}}R_{{5}}R_{{8}}+
 
R_{{3}}R_{{4}}R_{{5}}R_{{11}}+R_{{3}}R_{{4}}R_{{6}}R_{{7}}+R_{{3}}R_{{
 
4}}R_{{6}}R_{{8}}+R_{{3}}R_{{4}}R_{{6}}R_{{11}}+R_{{3}}R_{{4}}R_{{7}}R
 
_{{10}}+R_{{3}}R_{{4}}R_{{8}}R_{{10}}+R_{{3}}R_{{4}}R_{{10}}R_{{11}}+R
 
_{{3}}R_{{5}}R_{{6}}R_{{7}}+R_{{3}}R_{{5}}R_{{6}}R_{{8}}+R_{{3}}R_{{5}
 
}R_{{6}}R_{{11}}+R_{{3}}R_{{5}}R_{{7}}R_{{8}}+R_{{3}}R_{{5}}R_{{7}}R_{
 
{11}}+R_{{3}}R_{{6}}R_{{7}}R_{{8}}+R_{{3}}R_{{6}}R_{{7}}R_{{10}}+R_{{3
 
}}R_{{6}}R_{{7}}R_{{11}}+R_{{3}}R_{{6}}R_{{8}}R_{{10}}+R_{{3}}R_{{6}}R
 
_{{10}}R_{{11}}+R_{{3}}R_{{7}}R_{{8}}R_{{10}}+R_{{3}}R_{{7}}R_{{10}}R_
 
{{11}}+R_{{4}}R_{{5}}R_{{6}}R_{{7}}+R_{{4}}R_{{5}}R_{{6}}R_{{8}}+R_{{4
 
}}R_{{5}}R_{{6}}R_{{11}}+R_{{4}}R_{{5}}R_{{7}}R_{{8}}+R_{{4}}R_{{5}}R_
 
{{7}}R_{{11}}+R_{{4}}R_{{6}}R_{{7}}R_{{8}}+R_{{4}}R_{{6}}R_{{7}}R_{{10
 
}}+R_{{4}}R_{{6}}R_{{7}}R_{{11}}+R_{{4}}R_{{6}}R_{{8}}R_{{10}}+R_{{4}}
 
R_{{6}}R_{{10}}R_{{11}}+R_{{4}}R_{{7}}R_{{8}}R_{{10}}+R_{{4}}R_{{7}}R_
 
{{10}}R_{{11}}}}
 
 
 
 
</math>
 
</math>
 
</center>
 
</center>

Revision as of 03:24, 17 September 2019

The following shows two step-by-step examples for find the equivalent resistance between two nodes for the following network:

R 0.png

In particular, this example demonstrates how the same network of resistors might reduce differently depending up which two nodes in the network are of interest. Each figure shows the "before" and "after" of a particular step.

\(R_{ab}\!\)

For the first example, we will find the equivalent resistance between nodes a and b.

  • Start by focusing only on nodes a and b

Rab 1.png

  • Next, combine any resistances that are in series. In this particular case, R8 and R11 are now in series because the wire leading to node d has been eliminated. Replace this combination with Req1:

\(R_{eq1}=R_8+R_{11}\) Rab Req1.png

  • Since no resistors are currently in series, now look for resistors that are in parallel. R7 and Req1 are in parallel; also, R3 and R4 are in parallel. Replace each with their equivalent resistances (named Req2 and Req3, respectively):

\(R_{eq2}=R_{eq1}||R_7=R_7||(R_8+R_{11})~~~~R_{eq3}=R_3||R_4~~~~\) Rab Req23.png

  • Now note that Req2 and Req3 are in series; replace them with Req4:

\(R_{eq4}=R_{eq2}+R_{eq3}=(R_7||(R_8+R_{11}))+(R_3||R_4)\) Rab Req4.png

  • After that step, R6 and Req4 are in parallel; replace them with Req5:

\(R_{eq5}=R_6||R_{eq4}=R_6||((R_7||(R_8+R_{11}))+(R_3||R_4))\) Rab Req5.png

  • Next, note that R2, Req5, and R10 are in series; replace them with Req6:

\(R_{eq6}=R_1+R_{eq5}+R_{10}=R_2+(R_6||((R_7||(R_8+R_{11}))+(R_3||R_4)))+R_{10}\) Rab Req6.png

  • Given that network, R5 and Req6 are in parallel; replace them with Req7:

\(R_{eq7}=R_5||R_{eq6}=R_5||(R_2+(R_6||((R_7||(R_8+R_{11}))+(R_3||R_4)))+R_{10}) \) Rab Req7.png

  • Finally, R1, Req7, and R9 are in series; replace them with Req,ab, the overall equivalent resistance between nodes a and b:

\(R_{eq,ab}=R_1+R_{eq7}+R_9=R_1+(R_5||(R_2+(R_6||((R_7||(R_8+R_{11}))+(R_3||R_4)))+R_{10}))+R_9\) Rab Reqab.png

  • Overall, this yields:

\( R_{eq,ab} = R_1~+~(R_5~||~(R_2~+~(R_6~||~((R_7~||~(R_8~+~R_{11}))+(R_3~||~R_4)))~+~R_{10}))~+~R_9\! \)

or, in other words,

punchline

\( \frac {R_{1}R_{2}R_{3}R_{4}R_{7}+R_{1}R_{2}R_{3}R_{4}R_{8}+R_{1}R_{2}R_{3}R_{4}R_{11}+R_{1}R_{2}R_{3}R_{6}R_{7}+R_{1}R_{2}R_{3}R_{6}R_{8}+R_{1}R_{2}R_{3}R_{6}R_{11}+R_{1}R_{2}R_{3}R_{7}R_{8}+R_{1}R_{2}R_{3}R_{7}R_{11}+R_{1}R_{2}R_{4}R_{6}R_{7}+R_{1}R_{2}R_{4}R_{6}R_{8}+R_{1}R_{2}R_{4}R_{6}R_{11}+R_{1}R_{2}R_{4}R_{7}R_{8}+R_{1}R_{2}R_{4}R_{7}R_{11}+R_{1}R_{3}R_{4}R_{5}R_{7}+R_{1}R_{3}R_{4}R_{5}R_{8}+R_{1}R_{3}R_{4}R_{5}R_{11}+R_{1}R_{3}R_{4}R_{6}R_{7}+R_{1}R_{3}R_{4}R_{6}R_{8}+R_{1}R_{3}R_{4}R_{6}R_{11}+R_{1}R_{3}R_{4}R_{7}R_{10}+R_{1}R_{3}R_{4}R_{8}R_{10}+R_{1}R_{3}R_{4}R_{10}R_{11}+R_{1}R_{3}R_{5}R_{6}R_{7}+R_{1}R_{3}R_{5}R_{6}R_{8}+R_{1}R_{3}R_{5}R_{6}R_{11}+R_{1}R_{3}R_{5}R_{7}R_{8}+R_{1}R_{3}R_{5}R_{7}R_{11}+R_{1}R_{3}R_{6}R_{7}R_{8}+R_{1}R_{3}R_{6}R_{7}R_{10}+R_{1}R_{3}R_{6}R_{7}R_{11}+R_{1}R_{3}R_{6}R_{8}R_{10}+R_{1}R_{3}R_{6}R_{10}R_{11}+R_{1}R_{3}R_{7}R_{8}R_{10}+R_{1}R_{3}R_{7}R_{10}R_{11}+R_{1}R_{4}R_{5}R_{6}R_{7}+R_{1}R_{4}R_{5}R_{6}R_{8}+R_{1}R_{4}R_{5}R_{6}R_{11}+R_{1}R_{4}R_{5}R_{7}R_{8}+R_{1}R_{4}R_{5}R_{7}R_{11}+R_{1}R_{4}R_{6}R_{7}R_{8}+R_{1}R_{4}R_{6}R_{7}R_{10}+R_{1}R_{4}R_{6}R_{7}R_{11}+R_{1}R_{4}R_{6}R_{8}R_{10}+R_{1}R_{4}R_{6}R_{10}R_{11}+R_{1}R_{4}R_{7}R_{8}R_{10}+R_{1}R_{4}R_{7}R_{10}R_{11}+R_{2}R_{3}R_{4}R_{5}R_{7}+R_{2}R_{3}R_{4}R_{5}R_{8}+R_{2}R_{3}R_{4}R_{5}R_{11}+R_{2}R_{3}R_{4}R_{7}R_{9}+R_{2}R_{3}R_{4}R_{8}R_{9}+R_{2}R_{3}R_{4}R_{9}R_{11}+R_{2}R_{3}R_{5}R_{6}R_{7}+R_{2}R_{3}R_{5}R_{6}R_{8}+R_{2}R_{3}R_{5}R_{6}R_{11}+R_{2}R_{3}R_{5}R_{7}R_{8}+R_{2}R_{3}R_{5}R_{7}R_{11}+R_{2}R_{3}R_{6}R_{7}R_{9}+R_{2}R_{3}R_{6}R_{8}R_{9}+R_{2}R_{3}R_{6}R_{9}R_{11}+R_{2}R_{3}R_{7}R_{8}R_{9}+R_{2}R_{3}R_{7}R_{9}R_{11}+R_{2}R_{4}R_{5}R_{6}R_{7}+R_{2}R_{4}R_{5}R_{6}R_{8}+R_{2}R_{4}R_{5}R_{6}R_{11}+R_{2}R_{4}R_{5}R_{7}R_{8}+R_{2}R_{4}R_{5}R_{7}R_{11}+R_{2}R_{4}R_{6}R_{7}R_{9}+R_{2}R_{4}R_{6}R_{8}R_{9}+R_{2}R_{4}R_{6}R_{9}R_{11}+R_{2}R_{4}R_{7}R_{8}R_{9}+R_{2}R_{4}R_{7}R_{9}R_{11}+R_{3}R_{4}R_{5}R_{6}R_{7}+R_{3}R_{4}R_{5}R_{6}R_{8}+R_{3}R_{4}R_{5}R_{6}R_{11}+R_{3}R_{4}R_{5}R_{7}R_{9}+R_{3}R_{4}R_{5}R_{7}R_{10}+R_{3}R_{4}R_{5}R_{8}R_{9}+R_{3}R_{4}R_{5}R_{8}R_{10}+R_{3}R_{4}R_{5}R_{9}R_{11}+R_{3}R_{4}R_{5}R_{10}R_{11}+R_{3}R_{4}R_{6}R_{7}R_{9}+R_{3}R_{4}R_{6}R_{8}R_{9}+R_{3}R_{4}R_{6}R_{9}R_{11}+R_{3}R_{4}R_{7}R_{9}R_{10}+R_{3}R_{4}R_{8}R_{9}R_{10}+R_{3}R_{4}R_{9}R_{10}R_{11}+R_{3}R_{5}R_{6}R_{7}R_{8}+R_{3}R_{5}R_{6}R_{7}R_{9}+R_{3}R_{5}R_{6}R_{7}R_{10}+R_{3}R_{5}R_{6}R_{7}R_{11}+R_{3}R_{5}R_{6}R_{8}R_{9}+R_{3}R_{5}R_{6}R_{8}R_{10}+R_{3}R_{5}R_{6}R_{9}R_{11}+R_{3}R_{5}R_{6}R_{10}R_{11}+R_{3}R_{5}R_{7}R_{8}R_{9}+R_{3}R_{5}R_{7}R_{8}R_{10}+R_{3}R_{5}R_{7}R_{9}R_{11}+R_{3}R_{5}R_{7}R_{10}R_{11}+R_{3}R_{6}R_{7}R_{8}R_{9}+R_{3}R_{6}R_{7}R_{9}R_{10}+R_{3}R_{6}R_{7}R_{9}R_{11}+R_{3}R_{6}R_{8}R_{9}R_{10}+R_{3}R_{6}R_{9}R_{10}R_{11}+R_{3}R_{7}R_{8}R_{9}R_{10}+R_{3}R_{7}R_{9}R_{10}R_{11}+R_{4}R_{5}R_{6}R_{7}R_{8}+R_{4}R_{5}R_{6}R_{7}R_{9}+R_{4}R_{5}R_{6}R_{7}R_{10}+R_{4}R_{5}R_{6}R_{7}R_{11}+R_{4}R_{5}R_{6}R_{8}R_{9}+R_{4}R_{5}R_{6}R_{8}R_{10}+R_{4}R_{5}R_{6}R_{9}R_{11}+R_{4}R_{5}R_{6}R_{10}R_{11}+R_{4}R_{5}R_{7}R_{8}R_{9}+R_{4}R_{5}R_{7}R_{8}R_{10}+R_{4}R_{5}R_{7}R_{9}R_{11}+R_{4}R_{5}R_{7}R_{10}R_{11}+R_{4}R_{6}R_{7}R_{8}R_{9}+R_{4}R_{6}R_{7}R_{9}R_{10}+R_{4}R_{6}R_{7}R_{9}R_{11}+R_{4}R_{6}R_{8}R_{9}R_{10}+R_{4}R_{6}R_{9}R_{10}R_{11}+R_{4}R_{7}R_{8}R_{9}R_{10}+R_{4}R_{7}R_{9}R_{10}R_{11}}{R_{2}R_{3}R_{4}R_{7}+R_{2}R_{3}R_{4}R_{8}+R_{2}R_{3}R_{4}R_{11}+R_{2}R_{3}R_{6}R_{7}+R_{2}R_{3}R_{6}R_{8}+R_{2}R_{3}R_{6}R_{11}+R_{2}R_{3}R_{7}R_{8}+R_{2}R_{3}R_{7}R_{11}+R_{2}R_{4}R_{6}R_{7}+R_{2}R_{4}R_{6}R_{8}+R_{2}R_{4}R_{6}R_{11}+R_{2}R_{4}R_{7}R_{8}+R_{2}R_{4}R_{7}R_{11}+R_{3}R_{4}R_{5}R_{7}+R_{3}R_{4}R_{5}R_{8}+R_{3}R_{4}R_{5}R_{11}+R_{3}R_{4}R_{6}R_{7}+R_{3}R_{4}R_{6}R_{8}+R_{3}R_{4}R_{6}R_{11}+R_{3}R_{4}R_{7}R_{10}+R_{3}R_{4}R_{8}R_{10}+R_{3}R_{4}R_{10}R_{11}+R_{3}R_{5}R_{6}R_{7}+R_{3}R_{5}R_{6}R_{8}+R_{3}R_{5}R_{6}R_{11}+R_{3}R_{5}R_{7}R_{8}+R_{3}R_{5}R_{7}R_{11}+R_{3}R_{6}R_{7}R_{8}+R_{3}R_{6}R_{7}R_{10}+R_{3}R_{6}R_{7}R_{11}+R_{3}R_{6}R_{8}R_{10}+R_{3}R_{6}R_{10}R_{11}+R_{3}R_{7}R_{8}R_{10}+R_{3}R_{7}R_{10}R_{11}+R_{4}R_{5}R_{6}R_{7}+R_{4}R_{5}R_{6}R_{8}+R_{4}R_{5}R_{6}R_{11}+R_{4}R_{5}R_{7}R_{8}+R_{4}R_{5}R_{7}R_{11}+R_{4}R_{6}R_{7}R_{8}+R_{4}R_{6}R_{7}R_{10}+R_{4}R_{6}R_{7}R_{11}+R_{4}R_{6}R_{8}R_{10}+R_{4}R_{6}R_{10}R_{11}+R_{4}R_{7}R_{8}R_{10}+R_{4}R_{7}R_{10}R_{11}} \)

The resistance between nodes \(c\) and \(d\) will be different because of how the resistors appear to the paths between those two nodes. Specifically, the equivalent resistance between those two terminals is:

\( R_{eq,cd} = (((((R_2~+~R_5~+~R_{10})~||~R_6)~+~(R_3~||~R_4))~||~R_7)~+~R_{11})~||~R_8 \)

Note that resistors \(R_1\) and \(R_9\) are not involved in this equivalent.