Difference between revisions of "Phasors"
(→RMS Values) |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
\begin{align} | \begin{align} | ||
v(t)&=V_{max}\cos(\omega t+\phi)=\Re\left\{V_{max}e^{j(\omega t+\phi)}\right\}=\Re\left\{V_{max}e^{j\omega t}e^{j\phi)}\right\}=\Re\left\{\mathbb{V}e^{j\omega t}\right\}\\ | v(t)&=V_{max}\cos(\omega t+\phi)=\Re\left\{V_{max}e^{j(\omega t+\phi)}\right\}=\Re\left\{V_{max}e^{j\omega t}e^{j\phi)}\right\}=\Re\left\{\mathbb{V}e^{j\omega t}\right\}\\ | ||
− | \mathbb{V}& | + | \mathbb{V}&=V_{max}e^{j\phi}\\ |
\end{align} | \end{align} | ||
</math> | </math> | ||
Line 30: | Line 30: | ||
\begin{align} | \begin{align} | ||
\mathbb{V}&=\mathbb{V}_{max}=V_{max}e^{j\phi}=(\sqrt{2})V_{rms}e^{j\phi}\\ | \mathbb{V}&=\mathbb{V}_{max}=V_{max}e^{j\phi}=(\sqrt{2})V_{rms}e^{j\phi}\\ | ||
− | \mathbb{V}_{rms}&=V_{rms}e^{j\phi}=\frac{V_{ | + | \mathbb{V}_{rms}&=V_{rms}e^{j\phi}=\frac{V_{max}}{\sqrt{2}}e^{j\phi} |
\end{align} | \end{align} | ||
</math> | </math> | ||
Line 51: | Line 51: | ||
</center> | </center> | ||
− | == Phasor Notation for Power == | + | == Using Phasor Notation for Voltage and Current to Calculate Average Power == |
<center> | <center> | ||
<math> | <math> | ||
Line 59: | Line 59: | ||
</math> | </math> | ||
</center> | </center> | ||
+ | Note - the potentially complex number <math>\mathbb{S}</math> is '''not''' a phasor. It is '''not''' a representation of a magnitude and phase for a sinusoid. It is merely a mathematical tool for calculating the average real and reactive power for an AC circuit. |
Latest revision as of 00:08, 24 January 2024
Phasor Representation
\( \begin{align} v(t)&=V_{max}\cos(\omega t+\phi)=\Re\left\{V_{max}e^{j(\omega t+\phi)}\right\}=\Re\left\{V_{max}e^{j\omega t}e^{j\phi)}\right\}=\Re\left\{\mathbb{V}e^{j\omega t}\right\}\\ \mathbb{V}&=V_{max}e^{j\phi}\\ \end{align} \)
RMS Values
\( \begin{align} V_{rms}&=\sqrt{\frac{1}{T}\int_{t_0}^{t_0+T}\left(x(\tau)\right)^2~d\tau} \end{align} \)
And for a pure sinusoid,
\( \begin{align} v(t)&=V_{max}\cos(\omega t+\phi)\\ V_{rms}&=\sqrt{\frac{1}{T}\int_{t_0}^{t_0+T}\left(\cos(\omega\tau+\phi)\right)^2~d\tau}=\frac{1}{\sqrt{2}}V_{max} \end{align} \)
meaning
\( \begin{align} \mathbb{V}&=\mathbb{V}_{max}=V_{max}e^{j\phi}=(\sqrt{2})V_{rms}e^{j\phi}\\ \mathbb{V}_{rms}&=V_{rms}e^{j\phi}=\frac{V_{max}}{\sqrt{2}}e^{j\phi} \end{align} \)
Note - The Giorgio Rizzoni book uses
\( \begin{align} \tilde{\mathbf{V}} \end{align} \)
to express the RMS version of the phasor, so
\( \begin{align} \tilde{\mathbf{V}}\Longleftrightarrow\mathbb{V}_{rms} \end{align} \)
Using Phasor Notation for Voltage and Current to Calculate Average Power
\( \begin{align} \mbox{Complex Power: }&\mathbb{S}=\mathbb{V}_{rms}\mathbb{I}_{rms}^*=\frac{\mathbb{V}_{max}\mathbb{I}_{max}}{2}\\ \end{align} \)
Note - the potentially complex number \(\mathbb{S}\) is not a phasor. It is not a representation of a magnitude and phase for a sinusoid. It is merely a mathematical tool for calculating the average real and reactive power for an AC circuit.